
Fast Graph Simplification for Path-Sensitive Typestate Analysis
through Tempo-Spatial Multi-Point Slicing

FSE 2024

Xiao Cheng, Jiawei Ren, Yulei Sui
xiao.cheng@unsw.edu.au

Computer Science and Engineering
UNSW Sydney

July 26, 2024

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 1 / 44

mailto:xiao.cheng@unsw.edu.au

Contributions

▶ A fast graph simplification approach for path-sensitive typestate analysis (PSTA)
utilizing tempo-spatial multi-point slicing.

▶ A formulation of the multi-point markers extraction as a graph reachability problem
based on the IFDS framework.

▶ A new multi-point slicing technique that efficiently captures the temporal and
spatial correlations necessary for a path-sensitive typestate analysis.

▶ An implementation and an evaluation to demonstrate the effectiveness and
efficiency of graph simplification for PSTA.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 2 / 44

Contributions

▶ A fast graph simplification approach for path-sensitive typestate analysis (PSTA)
utilizing tempo-spatial multi-point slicing.

▶ A formulation of the multi-point markers extraction as a graph reachability problem
based on the IFDS framework.

▶ A new multi-point slicing technique that efficiently captures the temporal and
spatial correlations necessary for a path-sensitive typestate analysis.

▶ An implementation and an evaluation to demonstrate the effectiveness and
efficiency of graph simplification for PSTA.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 2 / 44

Contributions

▶ A fast graph simplification approach for path-sensitive typestate analysis (PSTA)
utilizing tempo-spatial multi-point slicing.

▶ A formulation of the multi-point markers extraction as a graph reachability problem
based on the IFDS framework.

▶ A new multi-point slicing technique that efficiently captures the temporal and
spatial correlations necessary for a path-sensitive typestate analysis.

▶ An implementation and an evaluation to demonstrate the effectiveness and
efficiency of graph simplification for PSTA.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 2 / 44

Contributions

▶ A fast graph simplification approach for path-sensitive typestate analysis (PSTA)
utilizing tempo-spatial multi-point slicing.

▶ A formulation of the multi-point markers extraction as a graph reachability problem
based on the IFDS framework.

▶ A new multi-point slicing technique that efficiently captures the temporal and
spatial correlations necessary for a path-sensitive typestate analysis.

▶ An implementation and an evaluation to demonstrate the effectiveness and
efficiency of graph simplification for PSTA.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 2 / 44

Typestate

▶ Typestate (state of type) represents different states of a given object type, which
expands the scope of standard immutable types to accommodate potential object
typestate changes.

1 void foo() {
2 int *p = malloc();
3 free(p);
4 use(p);
5 }

Type Typestate

Integer Allocated State
Freed State
Error State

Uninitialized State

Integer
Integer

Objp Obj Obj
points to

alloc

free
use

A Use-After-Free (UAF) Bug Type vs. Typestate

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 3 / 44

Typestate

▶ Typestate (state of type) represents different states of a given object type, which
expands the scope of standard immutable types to accommodate potential object
typestate changes.

1 void foo() {
2 int *p = malloc();
3 free(p);
4 use(p);
5 }

Type Typestate

Integer Allocated State
Freed State
Error State

Uninitialized State

Integer
Integer

Objp Obj Obj
points to

alloc

free
use

A Use-After-Free (UAF) Bug Type vs. Typestate

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 3 / 44

Typestate Analysis

▶ Typestate analysis determines whether a sequence of program operations, e.g.,
an API calling chain, performed upon an instance of a given type violates safety
specifications established by a finite state automaton (TFSA).

alloc use

free

use

*

Uninitialized State

Allocated State
Freed State
Error State

TFSA for UAF

2 int *p = malloc();

3 free(p);

4 use(p);

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 4 / 44

Typestate Analysis

▶ Typestate analysis determines whether a sequence of program operations, e.g.,
an API calling chain, performed upon an instance of a given type violates safety
specifications established by a finite state automaton (TFSA).

alloc use

free

use

*

Uninitialized State

Allocated State
Freed State
Error State

TFSA for UAF

2 int *p = malloc();

3 free(p);

4 use(p);

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 4 / 44

Typestate Analysis

Incorrect file
library usage

Use-after-
frees Memory leaks

Access control Concurrency bug API misuse
Xiao Cheng (UNSW) FSE 2024 July 26, 2024 5 / 44

Path-Sensitive Typestate Analysis (PSTA)
Introduction

▶ Path-sensitive typestate analysis (PSTA) enhances the precision of its
path-insensitive counterpart by capturing correlations between different
branches and eliminating false alerts stemming from infeasible paths.

▶ In PSTA, the maintenance of an (abstract) execution state that captures
program variable values and path constraints is crucial, and it evaluates the
feasibility of paths when encountering branching points.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 6 / 44

Path-Sensitive Typestate Analysis (PSTA)
Introduction

▶ Path-sensitive typestate analysis (PSTA) enhances the precision of its
path-insensitive counterpart by capturing correlations between different
branches and eliminating false alerts stemming from infeasible paths.

▶ In PSTA, the maintenance of an (abstract) execution state that captures
program variable values and path constraints is crucial, and it evaluates the
feasibility of paths when encountering branching points.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 6 / 44

Path-Sensitive Typestate Analysis (PSTA)
An Example

1 void foo() {
2 int *p = malloc();
3 bool c = nd();
4 if(c) {
5 free(p);
6 }
7 if(!c) {
8 use(p);
9 }
10 }

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

A UAF bug?

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 7 / 44

Path-Sensitive Typestate Analysis (PSTA)
An Example

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

A UAF bug?

2 int *p = malloc();

5 free(p);

8 use(p);

Yes, a UAF bug!

c

c

Contradictory
path

conditions

No UAF bug!

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 8 / 44

Path-Sensitive Typestate Analysis (PSTA)
Meet-over-Path (MOP)

▶ Path sensitivity: analyzing each path individually?

▶ With each if branch, the possible paths the program can take might double. This
means the complexity of the program grows exponentially as it gets longer.

#Path

Path Explosion

MOP is too
expensive!

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 9 / 44

Path-Sensitive Typestate Analysis (PSTA)
Meet-over-Path (MOP)

▶ Path sensitivity: analyzing each path individually?

▶ With each if branch, the possible paths the program can take might double. This
means the complexity of the program grows exponentially as it gets longer.

#Path

Path Explosion

MOP is too
expensive!

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 9 / 44

Path-Sensitive Typestate Analysis (PSTA)
ESP: Path-Sensitive Program Verification in Polynomial Time

▶ ESP is a representative PSTA working in polynomial time. At a control-flow joint
point, ESP merges execution states with identical typestates, yielding a single
symbolic state and thus achieving a maximal-fixed-point (MFP) solution with
program paths sensitive to typestate preserved.

[1] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: path-sensitive program verification in polynomial time. SIGPLAN Not. 37, 5 (May 2002),
57–68. https://doi.org/10.1145/543552.512538

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 10 / 44

Path-Sensitive Typestate Analysis (PSTA)
ESP Example

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

Typestate, Execution state
Symbolic State:

Execution State:
:All behaviors
:No behaviors (infeasible)
:feasible when c is satisfied

......

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 11 / 44

Path-Sensitive Typestate Analysis (PSTA)
ESP Example

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

Typestate, Execution state
Symbolic State:

Execution State:
:All behaviors
:No behaviors (infeasible)
:feasible when c is satisfied

......

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 12 / 44

Path-Sensitive Typestate Analysis (PSTA)
ESP Example

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

Typestate, Execution state
Symbolic State:

Execution State:
:All behaviors
:No behaviors (infeasible)
:feasible when c is satisfied

......

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 13 / 44

Path-Sensitive Typestate Analysis (PSTA)
ESP Example

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

Typestate, Execution state
Symbolic State:

Execution State:
:All behaviors
:No behaviors (infeasible)
:feasible when c is satisfied

......

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 14 / 44

Path-Sensitive Typestate Analysis (PSTA)
ESP Example

Entry

2 int *p = malloc();

3 bool c = nd();

if(c)

5 free(p);

if(!c)

8 use(p);

6

9

Exit

c

c

c

c

Typestate, Execution state
Symbolic State:

Execution State:
:All behaviors
:No behaviors (infeasible)
:feasible when c is satisfied

......

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 15 / 44

Path-Sensitive Typestate Analysis (PSTA)
Existing Efforts

▶ To the best of our knowledge, all previous endeavors in PSTA primarily focused on
enhancing the precision of typestate transitions through alias analysis [1-5] or
exploring new opportunities for integrating dynamic analysis techniques [6-8].

▶ We focus on a new and orthogonal perspective, improving the efficiency of the
path-sensitive algorithm.

[1] Stephen J. Fink et al. Effective typestate verification in the presence of aliasing. ISSTA 2006.

[2] Mathias Jakobsen et al. Papaya: Global Typestate Analysis of Aliased Objects. PPDP 2021.

[3] Tuo Li et al. Path-Sensitive and Alias-Aware Typestate Analysis for Detecting OS Bugs. ASPLOS 2022.

[4] Zhiqiang Zuo et al. Grapple: A Graph System for Static Finite-State Property Checking of Large-Scale Systems Code. Eurosys 2019.

[5] Eric Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent states. ICSE 2010.

[6] Eric Bodden et al. Partially Evaluating Finite-State Runtime Monitors Ahead of Time. TOPLAS.

[7] Matthew B. Dwyer et al. Residual Dynamic Typestate Analysis Exploiting Static Analysis: Results to Reformulate and Reduce the Cost of Dynamic
Analysis. ASE 2007.

[8] Haijun Wang et al. Typestate-Guided Fuzzer for Discovering Use-after-Free Vulnerabilities. ICSE2020.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 16 / 44

Path-Sensitive Typestate Analysis (PSTA)
Insights and Challenges

▶ We aim to tackle the overhead by using sparse idea that skips unnecessary control
flows using def-use information.

▶ Sparse analysis cannot capture multi-point temporal use-to-use information.

▶ We focus on a more practical perspective–reducing the size of the control flow
graph (graph simplification), rendering it a sparser structure with unnecessary
control flows eliminated, while preserving the multi-point temporal information.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 17 / 44

Path-Sensitive Typestate Analysis (PSTA)
Insights and Challenges

▶ We aim to tackle the overhead by using sparse idea that skips unnecessary control
flows using def-use information.

▶ Sparse analysis cannot capture multi-point temporal use-to-use information.

▶ We focus on a more practical perspective–reducing the size of the control flow
graph (graph simplification), rendering it a sparser structure with unnecessary
control flows eliminated, while preserving the multi-point temporal information.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 17 / 44

Path-Sensitive Typestate Analysis (PSTA)
Insights and Challenges

▶ We aim to tackle the overhead by using sparse idea that skips unnecessary control
flows using def-use information.

▶ Sparse analysis cannot capture multi-point temporal use-to-use information.

▶ We focus on a more practical perspective–reducing the size of the control flow
graph (graph simplification), rendering it a sparser structure with unnecessary
control flows eliminated, while preserving the multi-point temporal information.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 17 / 44

Framework Overview

2

1

3

1 2 3

Multi-Point Markers
Extraction

3

2

1Temporal
Multi-Point

Slicing (TMS)

Spatial
Multi-Point

Slicing (SMS)

Tempo-Spatial Multi-Point Slicing

PSTA
Solver

Use-after-
frees

Double-
frees

Memory
leaks
Null

dereferences
......

Automaton

Program

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 18 / 44

Motivating Example
Source Code and ICFG

Source Code

1 void foo(T t) {
2 int *p = malloc(10);
3 int *q = malloc(10);
 ...
4 if (t > 1) {
5 free(p);
6 if (t < 3)
7 free(q);
8 } else {
9 free(q);
10 p = bar(p);
11 }
 ...
12 if (t <= 1)
13 printf("%d\n", *p);
14 else
15 log_error(*p);
16 }

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use

Call
Return

15use

16
ICFG

A UAF bug

Not a UAF
bug

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 19 / 44

Motivating Example
ESP

ESP

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use

Call
Return

15use

16

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 20 / 44

Motivating Example
Our Approach

ESP

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use

Call
Return

15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

No Summary 13 use
15use

16
Our Approach

relevant node

irrelevant node
relevant edge

irrelevant edge

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 21 / 44

Motivating Example
Our Approach

ESP

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use

Call
Return

15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

No Summary 13 use
15use

16
Our Approach

relevant node

irrelevant node
relevant edge

irrelevant edge

Precision preserving!

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 22 / 44

Motivating Example
Benefits of Our Approach

#Symbolic States:
reduces from 18 to 6
#ICFG Nodes:
reduces from 16 to 7

Benefits

#Merge Points:
reduces from 2 to 0
#Function Summary:
reduces from 1 to 0

#SMT Solving:
reduces from 6 to 3

ESP

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use

Call
Return

15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

No Summary 13 use
15use

16
Our Approach

relevant node

irrelevant node
relevant edge

irrelevant edge

Precision preserving!

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 23 / 44

Multi-Point Markers Extraction

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 24 / 44

Multi-Point Markers Extraction

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

Program
Operation

2

5

15 13

En

Ex

Condensed ICFG

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 25 / 44

Multi-Point Markers Extraction

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

2 5 15

2 5 13
Multi-Point Markers

Program
Operation

2

5

15 13

En

Ex

Condensed ICFG

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 26 / 44

Temporal Multi-Point Slicing (TMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 27 / 44

Temporal Multi-Point Slicing (TMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

2 5 15

2 5 13
Multi-Point Markers

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 28 / 44

Temporal Multi-Point Slicing (TMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

13 use
15use

16
Simplified ICFG

2 5 15

2 5 13
Multi-Point Markers

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 29 / 44

Temporal Multi-Point Slicing (TMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

13 use
15use

16
Simplified ICFG

2 5 15

2 5 13
Multi-Point Markers

Program
Operation Excluding

nodes not
passed by
any paths
covering
2 5 15

2 5 13
or

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 30 / 44

Spatial Multi-Point Slicing (SMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 31 / 44

Spatial Multi-Point Slicing (SMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

2 5 15

2 5 13
Multi-Point Markers

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 32 / 44

Spatial Multi-Point Slicing (SMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

13 use
15use

16
Simplified ICFG

2 5 15

2 5 13
Multi-Point Markers

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 33 / 44

Spatial Multi-Point Slicing (SMS)

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

13 use
15use

16
Simplified ICFG

2 5 15

2 5 13
Multi-Point Markers

Program
Operation

Excluding
nodes not
dependent

on
2 5 15

2 5 13
and

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 34 / 44

Putting it All Together

ICFG

1

2

3

4
5

6
7

9

8
11

12
13bar

alloc

free

10

use
15use

16

1

2

3

4
5

6
7

9

8
11

12bar

alloc

free

10

13 use
15use

16
Simplified ICFG

relevant node
2 5 15

2 5 13
Multi-Point Markers

Program
Operation

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 35 / 44

Datasets

▶ A micro-benchmark comprising 846 vulnerabilities from NIST, which includes
memory leaks, double-frees, use-after-frees and null dereferences.

▶ Ten open-source C/C++ projects across a variety of different domains: YAJL
(JSON parsing library), gzip (data compression program), MP4v2 (MP4 file
library), bzip2 (data compressor), darknet (neural network framework), nasm
(assembler), tmux (terminal multiplexer), Teeworlds (online multiplayer game),
NanoMQ (MQTT broker for IoT edge platform) and redis (in-memory database).

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 36 / 44

Statistics of Open-Source Projects

Table 1: The statistics of the open-source projects. #LOI denotes the number of lines of LLVM
instructions. #Method and #Call are the numbers of functions and method calls. #Ptr and
#Obj represent the quantities of pointer variables and memory objects. |V| and |E| indicate the
numbers of ICFG nodes and ICFG edges.

Project #LOI #Method #Call #Ptr #Obj |V| |E|
YAJL 20,592 151 561 10,197 208 9,253 9,922
gzip 33,058 195 459 19,264 457 16,889 16,582
MP4v2 39,178 601 610 15,925 1,991 15,595 16,733
bzip2 48,181 116 250 28,710 263 26,220 25,912

darknet 159,205 985 9,776 136,510 2,550 136,094 147,852
nasm 186,935 652 7,435 121,836 3,736 79,330 81,638
tmux 446,626 1,967 22,369 187,315 3,879 162,879 178,924

Teeworlds 529,737 2,306 28,267 292,621 5,754 251,356 246,029
NanoMQ 788,967 3,235 47,646 379,798 30,838 358,312 443,670
redis 1,363,507 6,314 68,664 708,251 13,958 589,019 704,356
Total 3,615,986 165,22 186,037 1,900,427 63,634 1,644,947 1,871,618

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 37 / 44

Research Questions

RQ1 How do different components impact the overall performance of FGS? We
want to investigate how different slicing methods influence the effectiveness and
efficiency of FGS.

RQ2 Does FGS outperform popular static tools for bug detection? We aim to
explore whether FGS can detect more bugs with lower false alarm rates than the
state-of-the-art on detecting existing bugs using the NIST benchmark with ground
truths.

RQ3 Can FGS find bugs with lower false positives efficiently in real-world
projects? We would like to examine the effectiveness (in terms of true and false
positives) and efficiency (in terms of running time and memory usage) of FGS on
real-world popular applications.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 38 / 44

Impact of Graph Simplification and Ablation Analysis (RQ1)
Graph simplification statistics

Table 2: Graph simplification result. |V |, |V ′|, |VTMS| and |VSMS| represent the number of nodes
in GICFG , G

′
ICFG , temporal slice and spatial slice, respectively. #Call and #Call ′ represent the

number of calling contexts of GICFG and G ′
ICFG . |E | and |E ′| represent the number of edges in

GICFG and G ′
ICFG .

Project |V | |V ′| |VTMS| |VSMS| #Call #Call ′ |E | |E ′|
darknet 136,094 1,791 5,523 1,928 9,776 93 147,852 1,802

nasm 79,330 24,946 38,081 26,604 7,435 2,317 81,638 26,034
tmux 162,879 2,671 4,273 3,693 22,369 205 178,924 2,810

Teeworlds 251,356 565 1,380 1,875 28,267 40 246,029 578
NanoMQ 358,312 62,543 102,118 118,663 47,646 5,801 443,670 61,696
redis 589,019 87,446 102,416 111,041 68,664 17,844 704,356 240,956

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 39 / 44

Impact of Graph Simplification and Ablation Analysis (RQ1)
Ablation analysis

Table 3: Ablation analysis results. The “−” in the Time columns indicates a running time of more
than 48 hours. FGS-TMS and FGS-SMS represent the versions of FGS using only temporal
slicing and spatial slicing respectively. FGS-Base represent the version of FGS without slicing.

Project
FGS FGS-TMS FGS-SMS FGS-Base

Time (secs) Mem (MB) Time (secs) Mem (MB) Time (secs) Mem (MB) Time (secs) Mem (MB)

darknet 750 2,104 2,542 2,785 817 2,784 81,422 34,244
nasm 894 2,482 1,681 4,132 940 3,413 111,750 31,781
tmux 1,932 5,251 5,782 9,064 3,102 7,223 − −
Teeworlds 407 4,320 1,424 5,014 1,700 6,062 − −
NanoMQ 8,722 10,176 25,890 13,600 29,100 18,424 − −
redis 14,266 58,231 23,146 78,131 31,103 98,064 − −

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 40 / 44

Impact of Graph Simplification and Ablation Analysis (RQ1)
Proportions of analysis time

0%

20%

40%

60%

80%

100%

darknet nasm tmux Teeworlds NanoMQ redis average
Graph generation Markers extraction TMS SMS Main phase

Figure 1: The proportions of different phases of FGS.

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 41 / 44

Analysis Results using NIST Benchmark (RQ2)

Table 4: Comparing true positives (#TP) and false positives (#FP) with six tools using the
NIST benchmark. The “−” means that the detection of specific vulnerabilities is not supported
by the corresponding tools.

Category
IKOS ClangSA Saber Cppcheck Infer Sparrow FGS Ground

Truth#TP #FP #TP #FP #TP #FP #TP #FP #TP #FP #TP #FP #TP #FP

Memory leak − − 128 112 200 126 0 0 126 162 − − 228 0 228
Double-free 228 18 156 20 204 20 84 144 − − − − 228 0 228
Use-after-free − − 40 0 − − 0 0 0 0 − − 138 0 138
Null dereference 234 18 216 24 234 18 108 18 134 82 228 18 252 0 252
Total 462 36 540 156 638 164 192 162 260 244 228 18 846 0 846

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 42 / 44

Bugs in Real-World Projects (RQ3)

Table 5: Comparing FGS with six open-source tools using ten popular applications. #TP and
#FP are true positive and false positive, respectively. Time (secs), Mem (MB) are running time
and memory costs. The “−” in the Time columns indicates a running time of more than 4h.
The “−” in the Mem columns indicates a cost of more than 100 Gigabytes.

Project

IKOS ClangSA Saber Cppcheck Infer Sparrow FGS

Report Time Mem Report Time Mem Report Time Mem Report Time Mem Report Time Mem Report Time Mem Report Time Mem

#TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB) #TP #FP (secs) (MB)

YAJL 4 15 2895 4822 0 0 4 111 3 22 2 206 1 5 1 13 2 15 13 133 3 86 6 59 5 0 2 168

gzip 4 4 3114 4949 0 1 27 151 0 4 18 179 1 3 89 35 1 17 36 177 1 22 14 89 4 0 18 835

MP4v2 2 1 3684 6215 0 0 11 145 3 24 3 380 0 6 56 38 4 28 496 426 1 20 214 231 5 0 2 344

bzip2 0 0 3690 6809 0 6 16 181 0 2 18 179 0 0 3 17 0 37 53 271 0 0 77 148 1 0 9 280

darknet 19 75 5216 8622 11 39 75 301 20 300 245 1145 2 24 11 55 12 104 1185 612 25 10 951 954 30 7 750 2104

nasm 2 8 5007 9951 2 7 180 515 2 102 572 2258 0 1 1 76 1 16 621 919 2 9 942 1132 3 1 894 2482

tmux 4 29 11325 38366 6 12 409 799 4 160 597 3882 0 0 61 39 2 34 693 637 3 12 1036 1894 5 1 1932 5251

Teeworlds 8 8 13569 40368 0 0 83 654 10 50 88 1877 1 4 2 54 6 48 267 449 5 24 1593 2984 12 2 407 4320

NanoMQ 17 29 9344 63068 0 0 52 555 10 426 1421 7613 5 54 111 40 18 74 910 555 6 354 1642 3125 31 11 8722 10176

redis − − − − 0 23 502 1499 7 141 8775 16752 0 1 637 123 1 51 2699 1655 1 149 2654 9211 9 1 14266 58231

Total 60 169 57844 183170 19 88 1359 4911 59 1231 11739 34471 10 98 972 490 47 424 6973 5834 47 686 9129 19827 105 23 27002 84191

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 43 / 44

Thank You!

Xiao Cheng (UNSW) FSE 2024 July 26, 2024 44 / 44

